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Abstract-A general linite-difference procedure for computing the behavior of compressible two-dimen- 
sional boundary layers is presented together with a turbulence model which allows quantitative predictions 
of the location and extent of the transition region between laminar and turbulent flow as it is influenced 
by such disturbances as surface roughness and free-stream turbulence. Reverse transition, i.e. relaminari- 
&ion, caused by large favorable streamwise accelerations, is also quantitatively predicted by this pro- 
cedure. The solution procedure depends upon the calculation of the streamwise develqpment of a turbulent 
mixing fength whose magnitude is governed by the turbulence kinetic energy equation. A large number of 
comparisons between predictions and measurements have been made and in general very good agreement 

is obtained. 
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INTRODUCTION 

WITH the advent of large high speed digital 
computers it is now practical and. in view of the 
generality of the resulting solutions, desirable in 

certain instances to solve the boundary-layer 
partial differential equations of motion by a 
direct numerical approach. Such a direct ap- 
proach is particularly attractive for predicting 
the behavior of transitional boundary layers 
since the boundary-layer partial differential 
equations can be similarly expressed for laminar, 
transitional, and fully-turbulent boundary layers. 
Consequently, one computer program can cal- 
culate the required solutions if the appropriate 
relationship between stress and rate of strain is 
inserted. From an engineering point of view, it 
seems that when the bounda~-layer equations 
are valid it is possible to predict either {he com- 
pletely laminar or fully-turbulent boundary- 
layer development to a satisfactory degree of 
accuracy in a large number of flow situations of 
practical interest [l]. However. in many flows, 
such as the boundary-layer on a gas turbine 
airfoil of moderate Reynolds numbers [2], for 
at least some part of the development the 
boundary-layer is neither completely laminar 
nor fully turbulent. 

To date, there has been very little progress in 
developing even simple semi-empiricai theories 
which can predict the location and mean flow 
behaviour during transition (e.g. [3]). Shortly 
after starting this study the present authors 
became aware of a similar approach taken by 
Glushko [4] and later by Donaldson [S]. 
However, neither the work of Glushko nor that 
of Donaldson has been developed into a 
practical prediction system although Beckwith 
and Bushnell [6] have indicated that perhaps 
Glushko’s approach could yield satisfactory 
engineering predictions after a short develop- 
ment period. More recently. Harris [7] has 
computed the transitional behavior of certain 
high Mach number boundary layers starting 
from a known transition location and using 
the suggestion of Dhawan and Narasimha [gj 
to determine the extent of the transition region. 
Harris’ calculations showed a very encouraging 
degree of agreement with the measurements: 
however, as formulated, the approach has a very 
heavy reliance on empirical informati~~n and 
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cannot a priori predict the effect of disturbances 
such as free-stream turbulence. At the time the 
present study was commenced, little beyond 
simple data correlations was available and the 
aim was, therefore, to provide an improved 
practical method of computing the development 
of the boundary-layer mean flow during transi- 
tion which could take into account boundary 
conditions such as free-stream turbulence and 
wall roughness. 

THEORY 

The basic equations 
Within the framework of the usual boundary- 

layer approximations, various authors, for ex- 
ample Schubauer and Tchen [9], have reduced 
the time-averaged Navier-Stokes equations to 
the compressible boundary-layer equations of 
motion. In the boundary-layer equations, it is 
convenient to represent the turbulent stress 
contribution to the total shear stress, z, in terms 
of an effective turbulent viscosity, vT, and the 
turbulent temperature correlation contribution 
to the total heat flux, Q, in terms of an effective 
turbulent conductivity, 4, where 

pv,az/ay = -$7; kTa$y = - pcj’T’. (1) 

The prime denotes a fluctuating quantity found 
in turbulent flow and the bar denotes a time 
mean-average. The effective turbulent conduc- 
tivity is now related to the effective turbulent 
viscosity by the introduction of the turbulent 
Prandtl number defined by 

Pr, = C&iVT/kT. (2) 

When the turbulent and molecular Prandtl 
numbers are introduced and, in addition, the 
usual assumptions are made that the contri- 
butions from the longitudinal gradient of the 
Reynolds normal stress and normal pressure 
gradients are negligible, then for steady two- 
dimensional flow the boundary-layer equations, 
together with the continuity equation, may be 
written in the form 

where the stagnation temperature To, total 
apparent stress Z, and total effective heat flux Q, 
are defined as 

TO = T + ii2/2c,, f = paiilay - pu’o’, 
-- 

Q = ka7yay - pcpm (6) 
These equations are, of course, also valid for 
laminar flow when all the turbulent correlations 
are zero. 

The wall and free-stream boundary conditions 
employed in the solution are 

y = 0 jYi = (ji),, To = T, or aTlay = 0 

y -+ co p6 = p,ii,, To = Te: aclay = 0, 
(7) 

aTyay = 0 

where the subscripts w and e denote the wall 
and free-stream values, respectively. 

In order to predict the development of the 
mean velocity and temperature field it remains 
to specify the effective turbulent viscosity and 
turbulent Prandtl number in terms of the mean 
flow variables and this is described in the follow- 
ing section. The term jZ is eliminated from the 
momentum and energy equations by applica- 
tion of the continuity equation. 

The turbulence model 
Derivation of the integral turbulence kinetic 

energy equation. The basic turbulence model 
used in the present work is described by 
McDonald and Camarata [lo] and in the 
present note the extension required to compute 
the development of two-dimensional compres- 
sible transitional boundary layers is given. The 
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turbulence model assumes the existence of a 
well-behaved one parameter mixing length 
profile normal to the wall and computes the 
streamwise development of this mixing length 
profile using an integral form of the turbulence 
kinetic energy equation. In fully-turbulent flow, 
this procedure was found to result in quite 
accurate predictions of the boundary-layer 
development. 

The turbulence kinetic energy equation is 
derived from the Navier-Stokes equations and 
in compressible flow. this derivation has been 
given by Favre [ll]. After the introduction of 
certain boundary-layer approximations which 
restrict the use of this theory to nonhypersonic 
boundary layers (Bradshaw [12]), the turbu- 
lence kinetic energy equation can be integrated 
with respect to y to yield 

8 - &p- s aii 
p)FXdy + E (8) 

I, 
where 

+p++++ 

L Je 

and e represents the sum of the turbulent dissi- 
pation terms. 

Following Townsend [13] and Bradshaw et 
aI. [12], structural scales a, and L are intro- 
duced, together with mixing length l, and these 
scales are defined as 

-27 = a,g,P = a,?,p = a,? 

t = ( - u’v’)f/L, ( -i&7)+ = laqay. 
(10) 

The structural coefficients a, are generally 
ascribed constant values independent of both x 
and y. This point will be discussed subsequently. 

but, if for the moment, it is accepted and integral 
parameters fpi, (b2, and (b3 are introduced, 
equation (8) can be written 

where 

where ye is a nondimensional transverse distance 
y/6’ (6’ is arbitrary) and 6 is the boundary- 
layer thickness. Equation (11) without the 
normal stress term & and E was used by 
McDonald and Camarata [lo] to compute the 
downstream development of the mixing length 1. 

In equation (1 l), cbl is termed the convection 
integral, & the net production integral, and & 
the normal stress production integral. The 
definition of turbulence scales a,, 1, and L; only 
becomes questionable when restrictions are 
placed on the relationship of the scales to the 
other flow variables. The required, and it is 
thought plausible, relationships between the 
turbulence scales and the mean flow variables 
are now introduced. This process is greatly 
facilitated by introducing an hypothesis put 
forth by Morkovin [14], who suggested that, 
provided the fluctuation in Mach number 
remains small (which is true for free-stream 
Mach numbers below about 5 [12, 14]), the 
structure of turbulence remains essentially un- 
altered by the fluid compressibility. On the basis 
of this hypothesis, it is permissible to attribute 
incompressible values to the structural scales 
defined by equation (10). These structural scales 
are now considered in detail. 
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The dissipation length scale L. The definition of 
a turbulence length scale L in the manner given 
by equation (10) is based upon the results of 
isotropic turbulence. Past experience in shear 
flows leads one to expect that this scale would be 
reasonably constant in a boundary layer when 
expressed as a fraction of the overall boundary- 
layer thickness. An empirical fit to Bradshaw, 
et al.3 measurements [15] of L is given by 
McDonald and Camarata [lo] as 

L = O-1 6 tanh [~y/(.16)] (15) 

and IC is the von K&man constant, taken as 
043 throughout the present study. Within the 
viscous sublayer both the dissipation length L 
and the mixing length 1 are scaled by a damping 
factor 9 which will be discussed in detail sub- 
sequently. Outside the sublayer equation (15) 
has been used throughout, even for transitional 
boundary layers. The justification for taking an 
expression appropriate to a fully-developed 
turbulent boundary-layer to describe the dissi- 
pation length scale of transitional turbulence 
resides in the turbulence kinetic energy equation, 
equation (ll), where it can be seen that, in the 
very early stages oftransition when the Reynolds 
stress is still small, it follows that 1, the mixing 
length, will also be small and, consequently, the 
net production integral 4z will be insensitive to 
the precise value of the dissipation length L, 
provided that L is not also small in this region. 
It is. of course. unlikely that transitional 
turbulence, being a weak low frequency distur- 
bance, could have a small dissipation length 
scale, since a small dissipation length scale (i.e. 
large dissipation) is usually associated with a 
high frequency fluctuation. 

The mixing length 1. Turning to the mixing 
length 1 defined by equation (lo), McDonald 
and Camarata [lo] pointed out that, on the 
basis of the experimental evidence, the mixing 
length distribution across turbulent boundary 
layers could be expressed as a one parameter 
family 

I/C? = 1,/S tanh(rcy/l,). (16) 

For equilibrium boundary layers, 1,/6 has a 
value near 0.09, but for nonequilibrium boundary 
layers 1,/6 varies in the streamwise direction 
(Goldberg [ 161). Insofar as transitional boundary 
layers are concerned there is little available in 
the way of measurements to provide guidance 
and. consequently, equation (16) was used even 
in the transitional region. As mentioned pre- 
viously, within the viscous sublayer the mixing 
length is scaled by the damping factor 9 which 
will be described in detail subsequently. 

When further information becomes available, 
more sophisticated n-parameter mixing length 
profiles can be introduced, requiring additional 
n-l equations, which could certainly be obtained 
by taking integral moments of the turbulence 
kinetic energy equation. It is, however, a very 
convenient feature of equation (16) that, since 
the mixing length profile is specified in terms of 
a single additional parameter l,, only one 
additional equation, the integral turbulence 
kinetic energy equation, is required to describe 
the streamwise development of the turbulent 
shear stress. 

The sublayer damping factor 9. It is well 
known that within the viscous sublayer (say, 
y+ < 50, where y+ = y,/(z/p)/?) the mixing 
length (and the dissipation length) go to zero as 
the wall is approached (see [17]). To model this 
effect the assumed mixing length profiles are 
scaled by a damping factor g(y’). Various sug- 
gestions for this damping factor have been made 
(e.g. [17]) and th e one used in the present note 
is based upon the notion that the flow in the 
viscous sublayer is only intermittently fully 
tubulent (with 1 = KY for instance, holding within 
the turbulent bursts). If it is then assumed that 
the mean flow gradient &//a~ is the same within 
and outside the turbulent patches, it can be 
argued that 

- ulol = y( - uIuI)T = ~(ldti/ay# = $;(au/ay)2 

= ( 1,&@yq2 (17) 

where 7 is the intermittency factor and the 
subscript ‘T’ refers to the fully-turbulent patches. 
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It follows from equation (17) that the conven- 
tionally defined damping factor .Q, is simply the 
square root of the intermittency factor 7. In the 
present note, it is assumed that the damping is 
distributed normally around some mean height 
y+ (=23.) with a standard deviation a( = S.), 
resulting in a smooth wall damping factor given 

by .gS = @((y’ - .;;f)/Gj (18) 

where P is the normal probability function. 
Excellent agreement with measured smooth 
wall sublayer mean velocity profiles is obtained 
using equation (18). In the present analysis y+ 
is based upon a local stress; however, the damp- 
ing was not allowed to decrease once a maximum 
value was achieved. 

The effect of wall roughness on the turbulent 
boundary-layer has long been recognized as 
resulting mainly in a decrease in the additive 
constant of the law of the wall, leaving the fully- 
turbulent part of the motion largely unaltered. 
Van Driest [17] suggested that this effect could 
be modelled by progressively eliminating the 
sublayer damping as the roughness height is 
increased. However, a direct application of Van 
Driest’s suggestion does not permit the additive 
constant to decrease further once the sublayer 
has been eradicated by asufficiently large rough- 
ness height (k+ > 60, where kf = k,J(T/p)/V 
and k, is the rms roughness height) in conflict 
with the experimental evidence. This deficiency 
is readily removed by allowing damping factors 
in excess of unity and it was found that an 
incremental damping factor due to roughness. 
A.9, where ASYK is given by 

A.gn, = (1. + k+/30.y+).exp(-2.3 y+/k+) (19) 

and .g = ,$?, + A.9, resulted in very good 
agreement between predicted and measured 
additive constants up to roughness heights of 
order k+ = 104. Equation (19) was the sole 
means of introducing the effect of roughness 
into the prediction procedure. 

The structural coefficients an. The calculations 
presented in the present note are not at all 
sensitive to the assumed values of a, and a3 

(see equation (10)). The fully turbulent flow 
values for these coefficients of 0.5 and 0.2 
(Bradshaw [ 151; McDonaid and Camarata [lo]) 
were, consequently, used throughout. It would 
be expected that the coefficient a, (in the sub- 
sequent discussion the subscript ‘I’ is dropped) 
would vary both with the applied strain &@y 
and, based on the experimental evidence of the 
viscous sublayer, with the relative stress level. 
It is, of course, to be expected that a would vary 
with the applied strain since in isotropic turbu- 
lence &?/a~ is zero and so is the Reynolds shear 
stress. The departure of the Reynolds shear 
stress from zero and the growth of u is associated 
with alignment of the structure under the action 
of the applied strain. On the basis of the measured 
response of isotropic turbulence to applied 
strain it is thought that, in the absence of any 
viscous effects, the adjustments of a to its fully- 
strained value would occur much faster than 
transition to turbulent flow. Initial calculations, 
therefore, used a fully-strained value of a = 0.15, 
however, it soon became apparent that plausible 
transition regions required a much lower value 
for u. The departure of a from the fully-turbulent 
value was ascribed solely to the action of 
viscosity and to quantify this relationship it is 
necessary to introduce an appropriate Reynolds 
number, R,. If, in the definition of this Reynolds 
number, R,, the velocity scale is taken as the 
square root of the Reynolds stress, -&?. and 
the length scale as the conventional mixing 
length, then the turbulence Reynolds number. 
R,, is simply the ratio of turbulent contribution 
to the apparent viscosity, 11~~ to the actual 
viscosity of the fluid. f, i.e. 

u = j’(R,) = ,f‘( VT/V). (201 

To simplify the solution of the turbulence kinetic 
energy equation, equation (ll), at a given 
streamwise location a layer-averaged value of 
R, 8, is used, and defined in straightforward 
manner as 

b d_ 
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where a,, the sublayer thickness, is defmed as the 
location at which the laminar stress has fallen to 
4 per cent of the total stress. In this way the 
viscosity in the definition of the turbulence 
Reynolds number is taken to be the average 
viscosity in the region where viscosity could 
influence the mean flow development. Several 
alternate definitions of the turbulence Reynolds 
number were examined and the predictions 
were not found to be critically dependent on the 
choice of definition. Assuming the turbulence 
Reynolds number Rz is the sole variable influen- 
cing the structural coeflicient a, then it is only 
necessary to derive the relationship between the 
two parameters for one set of flow .conditions 
to have it hold for all flow conditions. Based 
upon observation of the incompressible constant 
pressure flat plate equilibrium turbulent 
boundary-layer, it is readily ascertained that in 
the turbulence kinetic energy equation &, E, 
and the streamwise derivative of 4, are negligible 
for this flow, resulting in a reduced turbulence 
kinetic energy equation which can be written as 
a Bernoulli equation 

d (ln al/d& = f(&)f g&J. a (22) 

with f = d In S/dR,, g = -4~~~~R~~~~~~ 

where Cf is the skin friction coefficient and for 
convenience the independent variable has been 
changed from the streamwise distance x to the 
Reynolds number based on momentum thick- 
ness using the momentum integral equation. The 
arbitrary scale length 6+ has been taken as the 
boundary-layer thickness 6. Equation (22) has 
the solution 

a= CexpSf d&I/CC-Jg expJf d&d&] (23) 

which, upon sp~i~cation of the relationship 
between &,f, g, and R, for the equilibrium flat 
plate boundary-layer, provides the required 
general relationship between a and i;r,. Taking 
f(Re) first, it is noted that the reasonable 
assumption that 0/S does not vary greatly with 
momentum thickness Reynolds number gives 
f as l/R,. Furthermore, the group of terms 

4#~~/~C~~~~) was evaluated by num~~lly 
integrating the profiles of Maise and McDonald 
[19] and for a wide range of Reynolds numbers 
(these results also verified the neglect of the 
streamwise derivative of #i in deriving equation 
(23)). It was found that the grouping 4&8/ 
(C,4,S) was sensibly constant with a mean 
value of 666, giving g = -6*66/R@. With these 
relationships for f and g, equation (23) reduces 
to 

a = ao(RB,‘R,),‘[l* f 6,666~~(R~/R~~ - 1)] (24) 

where a, is the value of a at a specified Reynolds 
number RBo. It is observed for large R,/R,, that 
equation (24) asymptotes out to give Q = O-15, 
the expected value. To change independent 
variables from R, to& once again recourse is 
made to the profiles of Maise and McDonald 
[18] which integrate to yield for the higher 
Reynolds number range 

R e = 68.1 q + 6143 R, > 40‘ (25) 

Little information is available on the R, - ir, 
relationship at low R,. On the basis of trial and 
error it was found that 

R, = 100. R;‘22 8, < 1 (26) 

gave excellent results, and, in the intermediate 
zone between the two regimes, a simple cubic 
was constructed to match value and slope at the 
join points. Finally, on the basis of a comparison 
between theory and experiment, the constant of 
~tegration in equation (24) was selected and 
resulted in a value for a, of 0.012 at a WI of 
unity. For all of the calculations presented in 
the present note, the foregoing relationships 
were fued and not allowed to change from flow 
to flow. 

Method ofsolution 
The first step in transfo~ing the partial 

differential equations to a form more convenient 
for computer solution was to introduce the 
following new variables 
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r] = y/d+, F’(q) = 1.0 - pu/fi,ii,, 

G’(v)=(~~-- T’)/iT; -Kef), /? = j&/p (27) 

where the prime denotes differentiation with 
respect to q. The resulting momentum and energy 
equations are third order in F(r) and G(q), 
respectively. The scaling of y by the thickness 6+ 
allows the use of a fixed v] grid normal to the wall. 
The chosen definition of F’(q) in the form of a 
stream function allows easy introduction of the 
continuity equation. The equations were then 
reduced to ordinary differential equations nor- 
mal to the wall by use of the Hartree-Womersley 
(see [19]) approach of replacing initially the x 
derivatives by finite differences. The resulting 
third order ordinary differential equations for 
F(q) and G(q) are linearized and each solved by 
implicit -Gaussian elimination at the desired 
streamwise location, using the boundary con- 
ditions specified by equation (7). The nonlinear 
terms in the equations are then iteratively up- 
dated and the momentum and energy equations 
resolved until the wall stress and wall heat flux 
(or wall temperature if an adiabatic wall con- 
dition is specified) do not change within some 
specified tolerance. At this point the solution 
procedure is repeated at next streamwise loca- 
tion. 

The role of free-stream turbulence and related 
topics 
Free-stream turbulence is seen to provide a 

small source term E in the turbulence kinetic 
energy equation which starts the transition 
process. Items such as wall roughness, trans- 
piration, etc., by changing the turbulence pro- 
duction mechanisms within the boundary-layer, 
alter the magnitude of the Reynolds stress at a 
given streamwise location, and hence move the 
transition region. One aspect of the effect of 
roughness missing from the present analysis is 
its effect on the laminar boundary-layer. How- 
ever, experimentally, little effect of roughness on 
the laminar boundary-layer is observed pro- 
viding the roughness height is less than about 
half the boundary-layer displacement thickness. 

In the source term E, equation (9), usually only 
the ? term has any real contribution. However, 
since it is well-known that energy can usually 
only be exchanged between waves of similar 
frequencies, it is to be expected that the frequency 
as well as the intensity of the free-stream 
turbulence would have an influence on the transi- 
tion region. Consequently, in applying equation 
(9) the turbulence intensity should be interpreted 
as the intensity of “active” free-stream turbu- 
lence; that is, the free-stream turbulence made 
up largely of frequencies similar to those expected 
in the boundary-layer turbulent shear stress 
spectrum. In the calculations performed to date. 
the “active” free-stream turbulence has been 
taken as the nominal value quoted by the 
experimentor with one exception which is 
pointed out. 

In cases where the local free stream velocity 
is changing and the free stream turbulence is 
quoted at only one streamwise location, the 
additional assumption of frozen turbulence is 
made to enable the development of the source 
term E to be computed. Simply stated frozen 
turbulence assumes that the absolute fluctuation 
level remains unaltered by a change in the free 
stream velocity. This assumption should be 
reasonable for flows where the free stream 
changes occur rapidly and the mean flow trans- 
verse gradients are small. 

COMPARISON WITH EXPERIMENTS 

Since the turbulence model used herein 
reduces to the method of Spalding and Patankar 
[20], including the value of empirical constants, 
when the upstream history effect is negligible, 
the results from the present method are at least 
as accurate as those computed by Spalding 
and Patankar for fully-developed near equi- 
librium boundary layers. The comparisons 
presented herein demonstrate the additional 
capability of present procedure to predict the 
location, extent, and behavior of a variety of 
transitional flows. In related studies, Shamroth 
and McDonald [21] compare the transitional 
predictions from the present analysis with 
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measurements at low hypersonic speeds, while 
Briley and McDonald [22] have applied the 
present analysis to transitional separation 
bubbles. 

Effect of free-stream turbulence 
In Fig. 1 the measured displacement thickness 

Reynolds numbers at transition with varying 
free-stream turbulence levels from a wide range 

k 0 Zysina- Molozhen &a/ ref I251 
0 Slnclair Wells raf [261 
0 mm. et01 ref C271 
A Oryden ref C281 
0 Schubauer efol raf [291 

Ha I I and Hislop ref [301 
n Van der Hegge Zijnen :8g$ ;g;; 

0 I.0 2.0 

Free-stream turbulence, -- 
5 =r(U’z+v’2 +w.2)/311’*/u, y. 100 

FIG. 1. Effect of free-stream turbulence upon the transition 
Reynolds number. 

of experiments are shown compared with the 
predictions of the present analysis. Insofar as 
the analysis is concerned, the transition point 
is defined as the minimum skin friction location 
and all the calculations were initiated from a 
front stagnation point. Once the immediate 
stagnation region was negotiated, the turbulence 
kinetic energy equation was integrated in colla- 
boration with the streamwise momentum equa- 
tion. At the first streamwise station a mixing 
length of 090016 was assumed to initiate the 
calculation. The transition location is quite 
insensitive to this initial value provided it is 

small and nonzero. In Fig. 2 the measured 
incremental Reynolds numbers from the begin- 
ning to the end of transition are shown plotted 
againsl the transition Reynolds number, the 

I_ 

I_ 

IO' 3 100 3 

Transition Reynolds No.. Rx 

FIG. 2. Variation of transition length with transition 
Reynolds number. 

data being reproduced from Dhawan and 
Narasimha [S]. The experimental definition of 
the beginning and end of transition used by 
Dhawan and Narasimha is not clear Also 
shown in Fig. 2 are the incremental Reynolds 
numbers obtained from the predictions of the 
effect of free-stream turbulence used to construct 
Fig. 1. To obtain the predicted increments the 
skin friction was plotted against Reynolds 
number and in the transition zone a straight line 
approximation made to the skin friction curve. 
Intersection of this straight line with the laminar 
and turbulent lines defined the beginning and 
end of transition. Although the scatter in the 
data is considerable, the predicted trend and 
level obviously quite reasonable. In Fig. 3 a 
comparison with the measured Stanton numbers 
of Reynolds et al. [24], is shown and excellent 
agreement demonstrated. In Fig. 4 a detailed 
comparison with the measured transitional 
mean velocity profiles of Schubauer and 

D 
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Klebanoff [31] is shown. For the purposes of ~~~~~~~ 
this comparison the analysis was carried out 
from a front stagnation point using a higher 
value of the free-stream turbulence level than 
quoted in the experiment in order to initiate 
transition at the experimentally observed point, .: 

Free-stream Mach NO.LZZ 0.0 smooth wall. AT = 20°F 600 

0,005 
0.004 

(15 0,003 

or 0,002 
z 

r, 

5 
Rotioot roughnesshttodlsplocementthickness, K/8' 

$ 0~00~ FIG. 5. Effect of distributed surface roughness upon transi- 
& tion Reynolds number. 

0,0005 
5X.104 I05 5 106 5 

Reynolds No.. RX of the present analysis for the displacement 

FIG. 3. A comparison between measured and predicted thickness Reynolds number at transition as a 
Stanton number through transition. function of the roughness height normalized by 
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jr 
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FIG. 4. Comparison between measured and predicted mean 
velocity profiles during transition. 

but this should not significantly affect the the displacement thickness at transition. In 
validity of the comparison with the subsequently Fig. 6 a detailed comparison between the 
developed mean velocity profiles during transi- measured and predicted mean velocity profiles 
tion. for a particular transitional boundary layer 

measured by Feindt is presented. AI1 the rough- 

Effect of ~~1~ r~~~~~es~ ness calculations were made using a value of 
In Fig. 5 a comparison is presented between @75 per cent for the free-stream turbulence and 

Feindt’s [32] measurements and the predictions all were started from a front stagnation point. 
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o Measurements of Feindt ref [32] sandpaper roughness, nominal rms 0.005 in. 

- Prediction c = 3/4% roughness height 0.005 in 

= -6 c z 
Z’ 
z3 

$3 

51 

00 
0 

Local velocity ratio, U/U, 

FIG. 6. Comparison between measured and predicted mean 
velocity profiles during transition. 

The roughness was introduced once the 
immediate stagnation region was negotiated. 

Effect of large streamwise acceleration 
The effect of a large streamwise acceleration 

upon a turbulent boundary-layer has been 
studied both experimentally and theoretically 
by a number of investigators, for example, 
Launder and Jones [33]. There can now be 
little doubt that a sufficiently large favorable 
streamwise velocity gradient (say, K - 10P6, 
where K = v,/u,’ dU,/dx), imposed for a sufti- 
cient period of the flow development, will cause 
a turbulent boundary-layer to become very 
laminar-like in appearance. Launder and Jones 
[33] point out that the self-preserving so-called 
“sink flow” boundary-layers obtained by im- 
posing a constant value of K on the flow form 
a very convenient family of flows with which to 
investigate the relaminarization phenomenon. 
In both laminar and turbulent flow the “sink 
flow” boundary layers are characterized by a 
self-preserving mean velocity profile shape and a 
constant value of the momentum thickness 
Reynolds number. In Fig. 7 the completely 
laminar and fully-turbulent “sink flow” 
boundary-layer momentum thickness Reynolds 
number are presented as a function of the 
acceleration parameter K. The fully-turbulent 
line was computed using a constant outer layer 

- Present transitional them 1 

IO2 

----- Prediction, fully turbulen; 

I J 

0-7 10-6 IO-$ 

Streamwise acceleration, K= Y/U,’ dU, /dX 

FIG. 7. Comparison between predictions and measurements 
for the “sink flow” boundary-layer Reynolds number. 

mixing length of 0996. Also shown in Fig. 7 is the 
computed variation according to the present 
study and a gradual departure from the turbulent 
line is observed when K is greater than about 
10-6. The experimental data collected by 
Launder and Jones [33] are also shown in Fig. 7. 
In Fig. 8 a comparison is presented between a 
measured boundary-layer growing on a nozzle 
wall (Nash-Weber [38]) and the predictions of 
the present analysis. Once again theimprovement 
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of the present prediction over a fully-turbulent 
constant mixing layer calculation is demon- 
strated. 

0 Measurments of Nash - Webber ref [38] 
Stag press 5 In., Hg,MEXit = 2.0 

- Pred action 

‘--- Fully- turbulent 

I 
0 I.5 2.0 2.5 30 3.5 

Distance along nozzle. ft 

FIG. 8. A comparison between predictions and measurements 
for a superonic nozzle. 

Transition on a turbine airfoil 
Turner [2] has made measurements of the 

heat transfer distribution on a typical turbine 
airfoil with three free-stream turbulence levels. 
and noted some very substantial effects. To 
compare with Turner’s data in Figs. 9 and 10 it 
was necesrary to estimate the stream velocity 
upon which the quoted free-stream turbulence 
levels were based. This entailed running a 
potential flow calculation for Turner’s cascade 
to compute the entrance plane mid-channel 
velocity. Considering the uncertainties in deter- 
mining the reference velocity in this manner and 

the inherent errors in the measurement of free- 
stream turbulence, a difference of i 30 per cent 
between the free-stream turbulence level used in 
the present predictions and the actual value for 
the experiments is not unreasonable. Further- 
more. in view of the fine balance between 
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FIG. 9. Heat-transfer distribution on the uressure side of a 
turbine airfoil. ’ 
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FIG. 10. Heat-transfer distribution on the suction side of a 
turbine airfoil. 

streamwise acceleration and transition, the 
calculations are quite sensitive to the imposed 
pressure distribution. Consequently. any quanti- 
tative evaluation of the comparisons between 
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the present predictions and experiment must be 
viewed with caution. Lastly, it is worth remem- 
bering that unless some special ad hoc procedure 
were constructed, conventional prediction 
methods would give either the completely 
laminar or fully-turbulent heat transfer distri- 
bution and to bridge the gap a great deal of 
intuition and previous experience would be 
required. 

DkXUSSION 

It was previously argued that in the very 
initial stages of transition the integral turbulence 
kinetic energy equation reduced to turbulence 
advection being approximately equal to turbu- 
lence production. To provide some further 
insight into the transition process, the crude 
assumption can be made that the local Reynolds 
stress terms in such a reduced energy equation 
may be replaced by y-averaged values. Thus, 
with the assumption of incompressible flow 
with a constant free-stream velocity, the turbu- 
lence kinetic energy equation can be written 

;-+[zV&d - 6*)] = (-&&. (28) 

The implication of equation (28) is that, given a 
disturbance field, such as free-stream turbulence, 
which is capable of producing some turbulent 
shear stress within the bounda~-layer, then the 
turbulence intensity will not increase in the 
streamwise direction so long as the boundary- 
layer grows sufficiently rapidly to absorb the 
newly produced turbulence. However, it is well- 
known from momentum considerations that, in 
the absence of a streamwise pressure gradient, 
the rate of boundary-layer growth decreases 
with increasing Reynolds number. Consequently, 
at some Reynolds number the boundary-layer 
growth cannot absorb the newly produced 
turbulence, and so in order to maintain the 
integral energy balance the turbulence intensity 
increases in the streamwise direction and the 
transition process begins. 

Thus far, no mention has been made of the 

relationship of the present work to stability 
theory. A formal relationship must, of course, 
exist, since the complete turbulence kinetic 
energy equation governs both the wave motion 
of stability theory and the developing turbulence. 
Using stability theory to predict transition is an 
effort to extrapolate forward from laminar flow 
into turbulent flow. The present approach is to 
predict transition by extrapolating backwards 
from turbulent flow. It is hardly surprising 
that the present state of the art is such that 
neither approach can properly be made to 
overlap. Neither approach has sufficient detail 
of the flow structure to follow the development 
of a simple wave into turbulence. The philosophy 
of the present approach is based upon the belief 
that in a large’number of practical situations the 
development of simple unstable waves into 
turbulence occurs rapidly and the real question 
of transition concerns the advection-production 
balance of the turbulence. There seems little 
doubt that given the terms of reference of the 
present authors. which was to develop a practical 
method of calculating the position and mean 
flow development during transition, the ap- 
proach adopted in the present note has proven 
much more rewarding than could have been 
optimistically expected from stability theory, 

As an additional point, it should be recalled 
that, in certain carefully controlled laboratory 
experiments. it has been observed that, in the 
very initial stages, transition is a very wefl- 
organized three-dimensional phenomenon. 
Obviously, the use of a two-dimensional 
approach like the present method (albeit 
assuming a three-dimensional turbulence strut: 
ture) must be questioned when regular spanwise 
variations are observed in the flow. However, it 
is noted that first that the mean flow usually is 
unaffected by the transition process at this 
early stage, and second the spanwise variations 
are usually only observed when the disturbance 
field is very weak. Generally speaking, in most 
practical environments the spanwise variations 
are either not observed, or occur over such a 
short streamwise extent as to be negligible. In 
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any event, the present two-dimensional approach 
can be regarded as providing a spanwise 
averaged description of the transition process. 

As a final remark, it is observed that the present 
approach places little emphasis on the frequency 
ofthe disturbance and only the mean disturbance 
energy is considered important. This is obviously 
an oversimplification in certain instances. How- 
ever, it is noted experimentally that, for instance, 
when the free-stream turbulence intensities are 
greater than about 0.25 per cent, the resulting 
transition locations from a wide range of 
tunnels, measured by various experimentors 
over many years, depends solely on the free- 
stream turbulence energy level and apparently 
not on its frequency content. At turbulence 
levels of less than 0.25 per cent, it does appear 
as if a maximum transition Reynolds number 
for a given tunnel can be achieved (an acoustic 
phenomenon?) and further reduction in the 
free-stream turbulence level would be ineffective. 
The present analysis does not reflect this cutoff 
phenomenon and the predictions at these low 
turbulence levels must be regarded as upper 
limits of the transition Reynolds number. 
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CALCULS PRATIQUES DE COUCHES LIMITES DE TRANSITION 

R&asm&Une mithode gtnerale aux differences limes pour le calcul du comportement de couches limites 
compressibles bidimensionnelles est present&z avec un modele de turbulence qui permet des estimations 
quantitatives de la localisation et de T&endue de la region de transition entre l’ecoulemeut laminaire et 
turbulent quand elle est influenoee par da perturbations telles que la rugosite superficielle et la turbulence 
de l’tcoulement libre. Une transition inverse, c’est-a-dire la relaminarisation causee par de grandes 
accelerations favorables dans le sens de l’bcoulement est aussi estimee quantitativement par cette mtthode. 
La resolution dtpend du calcul du dtveloppement dans le sens de l’ecoulement dune longueur de melange 
par turbulence dont la grandeur est gouvernte par I’tquation d’energie cinetique de turbulence. Un 
grand nombre de comparaisons entre les estimations et mesures a Ctt fait et de facon genbrale elles sont 

en bon accord. 

PRAKTISCHE BERECHNUNG VAN UBERGANGSGRENZSCHICHTEN 

Zusammenfasaung-Ein allgemeines Verfahren mit liniten Differenzen zur Berechnung des Verhaltens 
von kompressiblen zweidimensionalen Grenzschichten wird zusammen mit einem Turbulenz-Model1 
vorgestellt. Es gestattet quantitative Voraussagen iiber den Ort und das AusmaB des Ubergangsbereiches 
zwischen laminarer und turbulenter Stromung zu machen und wie diese von Stiirungen wie Oberfllchen- 
rauhigkeit und Freistromturbulenz beeinflusst werden. Der umgekehrte Ubergang, d.h. die Rucklamina- 
risierung, hervorgerufen durch grosse gtinstige Beschleunigungen der Stromung, kann mittels dieses 
Verfahrens such quantitativ vorausgesagt werden. Das Losungsverfahren h&r@ ab von der Berechnung 
der Stromungsentwickhmg und von einer turbulenten MischungslBnge, deren GriiBe durch die Gleichung 
fiir die kinetische Energie der Turbulenz bestimmt ist. Eine gross! Zahl von Voraussagen und Messungen 

wurde verglichen und im allgemeinen eine sehr gute Ubereinstimmung festgestellt. 

IIPAKTII=IECKRE PACYETbI IlEPEXOAHbIX IIOI’PAHMtIHbIX CZOEB 

AHaoTa~Hsr-Hpeanomeua MaTeMaTAYeCKan MOAWIb TJ'P$VK!HTHbIX TwzHI~~~ A 0611@ 
KOHNHO-P33HOCTHbIfi MeTOR paCW?Ta XapaKTt?pACTHK C?KAMaeMbIX ABYMepHbIX IlOrPElHWIHbIX 
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CJIWB, 1WTOpbE IJ03BO,?RJOT KOJJH~It!CTBt?HHO patWYIITaTh nO;lOWt?HPIt’ 11 pa3Mepbl IW~WXt~;lHOii 

06.IttCTI1 MfiKQ’ naMHH3pHbIM II T).~‘~?‘.~tWTHbIM IIOTOfiaVIJ npl1 HaJI‘I’IIII, llO:l~eil~~Tl3lIJI 

III~~OXOBBTOCTII IIOBepXHOCTI1 11 T~[‘6?‘“WTHOCTII OCHOBHOI-0 IIOTOHR. c II~~>IOII~blO 3TOI-0 

MeTOfia MOiKHO TBKiliC K0.1kI4eCTJWH~IO pnCFII1TaTb 06paTHbIti IEpeXO~, T.P. ~‘e;Ik0IJll1Ft~“l- 

aaqmo noTotca, BbI:JbIBaeMj’lO ~0;IbIUIiM (‘OJJ~TCTByIO~HM ~WO~,eHJ14?>1 13 HaJl~lal3JJWJ1~1 

IBMiKKHHJI. ~W2I,HHElfl JIpOI(PQ’pkl :~aBHCIJT OT p;lC’IeTa paCJl[Jei&W!HHfJ H Hall~l3B,?CHJ4IJ 

ZU3IDHt’HMJJ ~;IMHbJ II)‘TJJ (‘Mf?IJEHJVJ, F!e.~J,Y,JHa KOTOl’OJ-0 OIJJJl’lJB;I~‘T(‘R ~p3BHC!Hll?\J TYI-‘6y- 

.?eHTHOii KCIHeTll’,eCKOiI :JHefN-51&i. ~~eO~HOJ~~‘“THO’ C$‘“BHeHHA pt%~.ll4’3TOB IIIIC’IPT~ ( 

AaHHbIMJJ Ji3MepeHdi 1101<3:3;lJ10 O’I?I,h SO,,O,,JW’ ,‘OOTBeTCTRJI,’ C”II,,CTaH,~eHHbJ\ ~;IIINbIX. 


